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Abstract
The specific heat of the ferroelectric–paraelectric phase transition in TGSe
under several electric fields in the range 175–750 V cm−1 has been measured
and analysed in terms of the same tricritical Landau potential obtained at zero
electric field plus the term −ξ Q, which represents the simplest form to include
the coupling between the order parameter Q and the electric field E (ξ ∝ E).
Data in the ferroelectric phase have been successfully fitted and it has been found
that ξ = k(E + E0), where k is constant and E0 ∼ 150 V cm−1. It has been
found that in order to describe the behaviour in both phases simultaneously it is
necessary to consider a more complex coupling between the electric field and
the order parameter, which makes the critical temperature and the coefficient
of Q6 in the tricritical potential be renormalized by the field.

1. Introduction

Triglycine selenate [(NH2CH2COOH)3H2SeO4], hereafter TGSe, is a well-known uniaxial
ferroelectric material belonging to the triglycine sulfate (TGS) family. It undergoes a typical
order–disorder phase transition at about T ∼ 22 ◦C, the space group of the lower-temperature
phase being P21 and that of the higher-temperature phase P21/m [1, 2].

In a recent paper [3], we analysed the phase transition in a high-purity sample of TGSe by
calorimetric measurements. No latent heat was detected, indicating that the phase transition
is continuous, and the specific heat of the ferroelectric phase was found to follow a classical
tricritical Landau potential, �G = 1

2 AεTc Q2 + 1
6 C Q6; Q is the normalized order parameter,

Q = P
P0

, P is the polarization and P0 is the spontaneous polarization at T = 0 K, so that Q
varies from zero in the paraelectric phase to the unity at 0 K; ε is the reduced temperature given
by ε = T −Tc

Tc
and the values of the coefficients were evaluated to be A = 0.0814 J g−1 K−1,

C = 24.05 J g−1 and Tc = 295.49 K.
The tricritical nature of this phase transition makes it very interesting to study the effect

of external fields and defects on the properties of TGSe, since small perturbations shift the
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transition to first or second order. Different experiments have been performed to analyse
these effects. Hydrostatic pressure and deuteration makes the transition first order [4–6] and a
tetracritical point has been established at a hydrostatic pressure of 2.3 kbar and at a deuterium
concentration of 38% [7]. The introduction of defects by γ irradiation shifts the transition to
second order [8]. In the case of the experiments under uniaxial stress, different results have
been found depending on the direction along which it has been applied. If the uniaxial stress
is applied along the a axis the transition remains near the tricritical point, whereas if it is
applied along the b (ferroelectric axis) and c axes the second-order phase transition character
is strengthened [9]. These results were recently confirmed by calorimetric measurements [3],
where we found that a weak uniaxial stress of 10 bar along the ferroelectric axis shifts the
transition to second order.

On the other hand, the study of a ferroelectric phase transition under an external electric
field E has a special interest, since it is the field conjugated to the polarization. Fugiel and
Mierzwa [10] investigated the isothermal behaviour of the electrical susceptibility as a function
of electric field for E < 10 kVcm−1 in the ferroelectric and paraelectric phases. The results
indicate that a different equation of state may exist for each phase. The data for the ferroelectric
phase for T < Tc − 0.5 K were found to fulfil a classical tricritical Landau equation of state,
where the coefficients of the Landau expansion A, C and Tc were assumed to be independent
of the electric field. In that paper a non-Landau behaviour of the data in the paraelectric phase
is also suggested.

The scaling equation of state which relates the polarization and the electric field has
also been successfully investigated from hysteresis loop measurements [11], in terms of the
generalized effective field approach developed by Gonzalo [12], which asymptotically gives
the classical Landau theory at T = Tc.

On the other hand, the determination of the specific heat under electric field in the
neighbourhood of a ferroelectric phase transition is very interesting because it provides a
way to study the energetic effect of the electric field on the phase transition. In addition, the
applicability of TGSe as a pyroelectric detector makes it very interesting to determine the
specific heat near the transition temperature because it is one of the variables which define the
pyroelectric figure of merit.

The specific heat of the ferroelectric phase transition in TGSe under electric field has been
previously studied for E > 500 V cm−1 [13]. It was found that the effect of the field was
to reduce the anomaly and to broaden it to higher temperatures. Nevertheless, no analysis in
terms of Landau theory was performed either in the ferroelectric or in the paraelectric phase.

The analysis of the effect of the electric field on the phase transition in terms of a theoretical
model, like Landau theory, requires characterizing very well the behaviour near the transition
temperature where the difference between data under different electric fields is high enough
to be investigated. This fact makes it necessary to use a technique which provides a high
number of experimental points in that region and which allows applying an external electric
field without disturbing the measurement.

The aim of the present paper is to investigate the influence of the electric field on the
phase transition in TGSe by specific heat measurements using conduction calorimetry. The
experimental device [14], designed and built by the group, permits studying the effect of
uniaxial stress and electric field on both the specific heat and the latent heat. It has allowed
characterizing experimentally and theoretically various phase transitions under external fields.
In the case of ferroelastic KMn1−x CaxF3, from the analysis of the specific heat, a 2-4-6 Landau
potential was determined as suitable to describe very precisely the effect of the doping on the
phase transition [15]. This technique was also used to study the effect of an electric field on the
ferroelectric phase transition in TGS [16] and to investigate the applicability of a 2-4 Landau
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potential under field, and a qualitative agreement between the theoretical predictions and the
experimental data was found.

The specific heat data will be analysed in terms of the classical Landau theory. We consider
initially that the only effect of the field is to add a −ξ Q term to the Landau potential determined
for zero electric field [3], where ξ represents the field conjugated to the order parameter. In
this frame, only the specific heat data in the ferroelectric phase are well described. To describe
the specific heat in both phases, it is necessary to consider that the transition temperature and
the coefficient of Q6 are renormalized by the action of the field.

2. Experimental details

The sample of TGSe, a parallelepiped with a thickness of 2.72 mm and an area of 55 mm2, was
prepared at the Institute of Physics, Adam Mickiewicz University, Poznan (Poland). It was
grown from aqueous solution by slow evaporation of water at constant temperature above the
Curie point. The crystal obtained was colourless and of high optical quality. The ferroelectric
axis, b-axis, of the single crystal was determined by the cleavage plane (010). The main faces
were prepared perpendicular to the b-axis and gold electrodes were evaporated on them.

The calorimetric measurements were performed by means of a high-resolution conduction
calorimeter, which has been described in detail in [14]. The sample is pressed between two
identical heat fluxmeters, which are made from 50 chromel–constantan thermocouples [17]
connected in series with the wires placed in parallel lines. One of the fluxmeters is fixed to
a calorimeter block while the other is pressed by a bellows. The fluxmeters, which have a
cross-section of 1 cm2, are rigid enough to apply a controlled uniaxial stress on the sample
in the range between 0 and 20 bar. Two electrical resistances and two electrodes are placed
between each face of the sample and fluxmeters. The resistances can dissipate a uniform
heat power on the sample faces and the electrodes allow for applying an electric field in
the sample.

The entire assembly is placed in a cylindrical hole made in a cylindrical piece of bronze
(10 kg) which serves as the heat sink (the calorimeter block). Its temperature is measured with
a commercial platinum thermometer and a resistance bridge. The block and two surrounding
radiation shields are placed into an hermetically sealed outer case under vacuum (10−7 Torr).

This high vacuum together with the small difference of temperature between the sample
and the calorimeter block (lower than 5 × 10−2 K) avoids lateral heat losses and it ensures
a unidimensional heat conduction through the fluxmeters. The calorimeter is placed in an
automatically controlled thermostat. The large thermal inertia of the calorimeter allows the
block to have a very good thermal stability. These features, together with the high number
of thermocouples, make the device highly sensitive. As a result, it is possible to measure the
specific heat changing the temperature of the assembly at a rate even lower than 0.1 K h−1

without observing significant temperature fluctuations in the block temperature.
The specific heat is measured using the method previously described in [18]. The same

constant power is dissipated in both heaters for 12 min to reach a steady state characterized by
a constant temperature difference between the sample and the calorimeter block. The power
is then cut off until a new steady state is reached again. Then, the power is switched on again
and the sequence is continuously repeated while the temperature of the assembly is changed
at a low constant rate. The integration of the electromotive force given by the fluxmeters
between every pair of steady state distributions allows us to determine the thermal capacity
of the sample. On account of the low temperature scanning rate, one experimental point is
obtained approximately every 0.01 K, allowing precise characterization in the neighbourhood
of the phase transition.
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Figure 1. Specific heat of TGSe for E = 0 (full circles), 175 V cm−1 (full diamonds), 250 V cm−1

(open circles), 500 V cm−1 (full squares) and 750 V cm−1 (open squares). The baseline determined
in [3] is also included.

3. Results

The specific heat of TGSe under several electric fields (E = 175, 250, 500, 750 V cm−1) was
measured, heating and cooling the sample at 0.03 K h−1. Each electric field was applied when
the temperature was 10 K above the transition temperature and it was kept constant during the
cooling and heating runs. The measurements were performed on the same sample and at the
same temperature scanning rate used in the previously reported investigation at zero electric
field [3], so that the data are directly comparable. No difference was found between the heating
and cooling data for each field.

The specific heat data for each field are represented in figure 1 together with the specific
heat for E = 0 and the baseline used to calculate the specific heat excess, determined in [3].
As is well known, the effect of the electric field is to decrease the anomaly and to broaden
it to higher temperatures, making the tail at higher temperatures become more significant.
These results are in agreement with previously reported results for higher values of the electric
field [13].

We will investigate if the above data are described by a classical tricritical Landau potential.
We assume initially that the coefficients A, C and Tc are the corresponding ones for the zero
electric field data whose values were determined previously [3] and indicated above. We also
assume that the effect of the electric field is included by means of a term −ξ Q in the power
expansion, where ξ represents the electric field (note that Q is dimensionless, so ξ is in units
of energy). This introduction of the electric field is the simplest one found in the literature and
it is analogous to that made previously in the analysis of the dielectric susceptibility [10]. The
corresponding equation of state is given by

ξ = ATcεQeq + C Q5
eq. (1)

Qeq has to be calculated numerically from the equation of state at every temperature since the
explicit dependence in terms of ε and ξ cannot be written.

The specific heat excess in an electric field �CE follows the relation

�CE = −A(1 + ε)Qeq
dQeq

dε
. (2)
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Table 1. Fitted fields ξ obtained from the fit of �CE in electric fields for T < Tc using the
tricritical Landau potential for TGSe at zero electric field plus the term −ξ Q.

E (V cm−1) ξ × 10−3 (J g−1)

175 1.56
250 1.92
500 3.13
750 4.33

Since Qeq cannot be explicitly written in terms of ε and ξ , it is not possible to get an
analytical expression for �CE as a function of ξ and ε. It is possible to solve this problem if
we work with the theoretical expression �CE(Qeq, ξ), obtained by including ε(Qeq, ξ ) and
dQeq

dε
from (1) in (2):

�CE(Qeq, ξ ) = −AQeq

1 + ξ

ATc

1
Qeq

− C
ATc

Q4
eq

− ξ

ATc

1
Q2

eq
− 4 C

ATc
Q3

eq

. (3)

The experimental data to fit are �CE at each temperature, �CE(ε). Taking into account
that the coefficients A, C and Tc are assumed to be independent of field, the only fitting
parameter is the field ξ . We indicated above that it is not possible to obtain explicitly the
analytical dependence �CE(ε, ξ ), so we have programmed a fitting routine, based on the
analysis of equations (1) and (3).

The first step is to select an experimental point �cE at one temperature. Since the
equilibrium order parameter Qeqi

is normalized and varies from 0 to 1 (Qeq ∈ (0, 1)), the
routine partitions this interval into a set of discrete values Qeqi

very close each other. The
number of values for Qeqi

is taken as high as possible to minimize the uncertainty in the fitting
procedure. At each Qeqi

, the fitting parameter ξ is varied in small steps and �CE(Qeqi
, ξi ) is

calculated from (3) and its corresponding reduced temperature εi from (1), so that �CE(εi , ξi )

is numerically obtained. The comparison of the selected experimental point �CE with the set of
values calculated using the routine provides the parameter ξi which best fits that experimental
point. The process is then repeated for all the data, in such a way that ξi is obtained for
each experimental point. If this model is suitable for explaining the experimental data, the
whole temperature dependence of the specific heat should be described with the same fitting
parameter and, then ξi should be, within the statistical uncertainty, the same. Otherwise, the
interval where ξi varies indicates the region where this model is not fulfilled.

For each electric field, the specific heat data for T < Tc were successfully fitted with an
average parameter ξ , whose value for each electric field is summarized in table 1. In figure 2,
we have plotted �CE versus T together with the theoretical curves corresponding to the fits,
showing a very good agreement for T < Tc.

In figure 3, we plot the parameter ξ which fits the specific heat data for T < Tc versus
the external electric field. ξ shows a linear dependence on the electric field which does not
cross the abscissa at the origin. It seems to suggest that the field ξ in the model is related to
the external electric field as ξ ∝ (E + E0) where E0 ∼ 150 V cm−1. This indicates that in
order to fulfil the model, it is necessary to consider that the field ξ conjugated to the order
parameter is not directly proportional to the external field but it is corrected by an additional
constant contribution E0. This contribution does not seem to be associated with an intrinsic
internal bias field since the hysteresis loop was found to be symmetrical and the specific heat
data measured with the electric applied in the opposite direction show the same behaviour.
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Figure 2. Specific heat excess in electric fields for E = 175, 250, 500 and 750 V cm−1. The
lines represent the best fit for T < Tc using the model which takes the Landau tricritical potential
determined in [3] plus a term −ξ Q.

-200 -100 0 100 200 300 400 500 600 700 800
0

1

2

3

4

ξξ ξξ
x

10
-3

(J
g-1

)

E (Vcm-1)

Figure 3. Fitted ξ for T < Tc versus the applied electric field. ξ enters the Landau tricritical
potential as a term −ξ Q.

Fugiel and Mierzwa [10] investigated the electrical susceptibility in terms of a Landau
tricritical potential analogous to that which we have used. In their study the field conjugated
to the order parameter is directly the external electric field while in our case an additional
contribution E0 arises. The reason for this difference could be related to the fact that both
studies have been performed focusing the fitting in different temperature intervals. In [10], the
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region nearer to the phase transition, where the anomaly is bigger, was discarded and the fit
was only made for T < Tc − 0.5 K. It was suggested that the investigation in the immediate
neighbourhood of the phase transition is complicated because the susceptibility does not tend
to infinity and the spontaneous polarization does not go to zero at the transition temperature
due to different effects such as surface layer effects, inhomogeneities in the sample and local
electric fields present even in the paraelectric phase.

Nevertheless, the difference between the specific heat values in various electric fields
is more significant when the transition temperature is approached and decrease rapidly far
from the transition. Our study has been performed including the data around the specific
heat maximum which have been found to be reproducible in different experiments. If we
used the potential determined in [10], the specific heat behaviour would be explained until
T < Tc − 0.5 K, but it would not explain the region nearer Tc, which is the most significant
on account of its magnitude.

From the analysis in terms of this model, it can be concluded that, very close to the
transition temperature, the field conjugated to the order parameter is not directly the external
field E . We must include an internal field contribution E0 which has to be taken into account
to describe the dynamical behaviour of the material in the region where the sample changes
from one phase to the other and the polarization changes very rapidly.

On the other hand, for T > Tc, the parameter ξ which fits the experimental data for each
field is found to be temperature dependent, indicating that it is not possible to find a fitting field
ξ which simultaneously describes data for both the ferroelectric and paraelectric state. This
fact suggests that, in this region, the internal field is strongly affected by the above-mentioned
effects and data in the paraelectric phase cannot be described in terms of this simple Landau
model as it is generally accepted in the literature. This result is also in agreement with the
dielectric susceptibility analysis [10].

The internal field can be related to the previously reported idea that the effective field
on the sample is the external field plus different terms depending on successively higher-
order terms in the polarization, which can be attributed to dipolar, quadrupolar, octopolar, etc
contributions [19]. It has been shown [11] that in the case of the tricritical phase transition
in TGSe the derived equation of state is analogous to the corresponding one derived above
from Landau theory (equation (2)) but it contains specific temperature dependence for the Q5-
coefficient. Nevertheless, in the temperature interval under investigation (294 < T < 297,
where the anomaly in the specific heat is significant), the variation of the coefficient of Q5 with
temperature is lower than ±1.5%, so it can be considered practically temperature independent.

To improve the above analysis including the data in the paraelectric phase and to keep
an equation of state similar to (2), which is compatible with the effective field approach, we
assume that the coefficients T ∗

c and C∗ become different to the corresponding ones for the zero
electric field data Tc and C . This may be a consequence of higher coupling terms between ξ and
Q (ξm Qn, m, n > 0) which could be allowed in the Landau expansion [20]: the terms which
include Q2 renormalize Tc and the terms which include Q6 renormalize C . In any case, to
obtain an equation of state analogous to the one which arises from the effective field approach,
it is necessary that the interaction energy between the field and the order parameter involves
the same powers of Q as the Landau potential does. The corresponding Landau potential is

�G = 1
2 AT ∗

c εQ2 + 1
6 C∗ Q6 − ξ∗ Q.

Consequently, it would be interesting to fit the specific heat data to a potential of these
characteristics. The procedure to fit the experimental data �cE(T ) to this model gets more
complex because the number of fitting parameters has increased (T ∗

c , C∗ and ξ∗). Nevertheless,
from the equation of state (1) and using the well-known relation between the entropy excess �S
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Figure 4. Specific heat excess in electric fields for E = 175, 250, 500 and 750 V cm−1. The lines
represent the fit of the Landau potential where the coefficients are renormalized as a consequence
of the electric field effect.

Table 2. Coefficients of the renormalized Landau potential.

E (V cm−1) T ∗
c (K) ξ∗ × 10−3 (J g−1) C∗ (J g−1 K−1)

175 295.37 1.15 31.6
250 295.42 1.44 30.2
500 295.38 2.80 29.0
750 295.32 4.16 28.2

and the order parameter, �S = − 1
2 AQ2

eq, it is possible to get an analytical expression for the
temperature as a function of �S and the field:

T = T ∗
c +

ξ∗

A

(
A

2�S

)1/2

+
C∗

A

(
2�S

A

)2

.

To fit the model, it is necessary to fit the experimental data for the temperature T versus
the entropy excess �S, where C∗, T ∗

c and ξ∗ are the fitting parameters.
The temperature dependence of the entropy excess can be obtained experimentally by the

numerical integration of the specific heat excess data �S = ∫
�CE

T dT . The advantage of our
technique is that the high number of available experimental data for �CE allows for making
the integration very precisely.

The least-squares fitting routine yielded the theoretical curves represented in figure 4
and the values of the parameters summarized in table 2. The theoretical prediction of this
model provides an adequate description of the data below and above Tc, although the fit for
E = 175 V cm−1 is not as good as those obtained for higher electric fields.
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Figure 5. Fitted ξ versus applied electric field E when the coefficients are renormalized due to the
effect of the electric field.

In figure 5, we represent the determined field ξ∗ versus the electric field E . The data
except for the lowest electric field show a linear tendency, which crosses the abscissa at the
origin. This indicates that the parameter ξ∗ is, in this case, strictly proportional to the external
electric field, ξ∗ = k E . Now, the effect of the internal field is included in the renormalization
of the coefficients of the Landau potential.

Concerning the other fitting parameters, C∗ and T ∗
c are found to be very similar for each

field. While C∗ is found to be 29 ± 1 J g−1 K−1, higher than the determined value for E = 0
(C = 24 J g−1 K−1), T ∗

c decreases about 0.15 K with respect to the value determined at zero
electric field.

As a conclusion, it has been found that the specific heat excess of TGSe in electric fields
can be interpreted in terms of Landau theory, even very near to the transition temperature. The
first model puts in evidence the existence of an internal field and the impossibility of fitting
the data in the paraelectric phase. The second model, which implies a more complex coupling
between the field and the order parameter, includes this internal field in the renormalization of
the transition temperature and the coefficient of Q6 in the Landau potential and it allows for
describing the specific heat behaviour in the paraelectric phase.
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